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1. Introduction

In a theory with gravity, the subtle issue of scale dependence is governed by the contri-

bution of degenerate or pinched surfaces (for spherical geometry). Considering a general

noncritical string background with graviton gµν = a2(φ)ĝµν(x) and dilaton Φ(φ, x), the

scale dependence roughly takes the form [1]

βµν
δS

δgµν
+ βΦ

δS

δΦ
= anomaly =

1

2
GIJ

(

φK(a)
) δS

δφI

δS

δφJ
+ . . . , (1.1)

where φIs correspond to different string states and GIJ represents the metric in the space of

those states, S being some appropriate low energy effective action for the boundary values

of the fields at some φ = φ0. These boundary fields gµν(x, φ0) and φI(x, φ0) are the initial

data for the corresponding critical background. The effective action S is the value of the

classical action on the solution with these initial data. The ellipses in the right hand side

of the above expression represent local function of the fields corresponding to the string

states. This anomaly arises when the world sheet completely collapses. The first term in

the right hand side is due to degenerate metrics coming from the pinching of the world

sheet at a given point (assuming spherical topology). This is compensated by running of

the renormalized background fields to keep net scale invariance of the effective action. This

is reminiscent of the Fischler-Susskind mechanism [2 – 7]. The equation (1.1) can be seen

as Hamilton-Jacobi equation for the classical action that captures the contribution of the

pinched spheres at least in one loop approximation. This also determines the sigma model

beta functions for the boundary couplings φI(x, φ0)

βws(φ)I = a
∂φI

∂a
. (1.2)
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Thus the bulk evolution of the scalar fields can be interpreted as the holographic renormal-

ization group flows for the boundary couplings. The running string tension a2(φ) has an

interpretation of the physical scale for the holographic RG.

This dynamics have been studied in the context of gravity/gauge theory correspon-

dence in AdS5 × S5 geometry at large ’t Hooft coupling λ = Ng2
YM [8 – 11], where the

classical evolution of the scalar fields φI coupled to 5D bulk can be interpreted as the

renormalization group flows of the 4D gauge theory couplings. The similar structural rela-

tionship were argued to hold in the regime of small λ too [12], where supergravity is not a

good approximation for the bulk dynamics. Such a framework elevates the gravity/gauge

theory correspondence to open/closed string duality. However, it is not obvious whether

such a holographic RG exists in 2D noncritical background, which is an interesting question

in the context of open/closed string duality.

Earlier for the 2D case, we calculated the boundary flows as large N renormalization

group flows of matrix quantum mechanics [13]. Then extending the work in [13] we stud-

ied the nonsinglet sector of c = 1 matrix model by considering a gauged matrix quantum

mechanics on circle with an appropriate gauge breaking term to incorporate the effect of

world-sheet vortices [14]. A new coupling was introduced that would act like vortex fu-

gacity. The flow equations indicate Berezinski-Kosterlitz-Thouless (BKT) phase transition

around the self-dual radius and the nontrivial fixed points of the flow exhibit black hole

like phases for a range of temperatures beyond the self-dual point. One class of fixed

points interpolate between c = 1 for R > 1 and c = 0 as R → 0 via black hole phase that

emerges after the phase transition. The other two classes of nontrivial fixed points also

develop black hole like behavior beyond R = 1. A thermodynamic study of the free energy

obtained from the Callan-Symanzik equations shows that all these unstable phases do have

negative specific heat. The thermodynamic quantities indicate that the system does un-

dergo a first order phase transition near the Hagedorn temperature, around which the new

phase is formed, and exhibits one loop finite energy correction to the Hagedorn density of

states. The fixed points with negative specific heat suggest that this phase transition is

associated with existence of black hole in 2D gravity.

Motivated by the higher dimensional picture of holographic RG flow, in this note we

will give a natural interpretation of the holographic RG in 2D by identifying the large N

renormalization group flows in the matrix quantum mechanics, derived in [13, 14], as the

radial evolution of the scalar fields coupled to the 2D bulk. Here the matrix quantum

mechanics acts as the boundary theory and the 2D bulk as the holographic dual to the

boundary theory. On one hand this examines the validity of the large N RG flows derived

from the matrix quantum mechanics and on the other hand illustrates an evidence of

holographic RG in the context of duality between matrix model and 2D quantum gravity.

Let us mention here that in large N RG the Callan-Symanzik equation for the physical

obserbvables (which basically gives the 2D nonperturbative background) is essentially a

world sheet hamiltonian constraint in the form of WdW equation. When computed with

all the N2 quantum mechanical degrees of freedom (that relates to having nonsinglets), this

can accommodate a much richer structure [15] than a semiclassical minisuperspace WdW

evolution of the background [16] and is α′ exact in computing the world sheet cosmological

– 2 –
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constant. Whereas, the Callan-Symanzik equation for the holographic RG is a classical

Hamilton-Jacobi evolution, which on being linearized and taken to the world sheet level,

would reduce to minisuperspace WdW evolution of the background with a leading order

effect in α′.

Of particular interest is the flow equation for compactification radius R of the Euclidian

time coordinate in matrix quantum mechanics obtained in [14]:

dR

dl
= −h(R)R , (1.3)

where h is some function of R and becomes large and positive as we approach the fixed

points with negative specific heat. In particular around black hole fixed points it is observed

to diverge as h(R) = coth(R − RH) + C → ∞ , as R → RH (radius corresponding to

Hagedorn transition). The flow of R indicates a deformation of the target space geometry

if one identifies the RG scale in matrix quantum mechanics to be the dilaton or the radial

direction in the holographic picture. Starting from the simple form of the flow equation

for R, near the fixed points with negative specific heat suggesting black hole like phase

of the flow equations of c = 1 matrix model, one can derive the cigar metric of the

2D black hole [17 – 19]. This is particularly nice as it gives the indication that matrix

quantum mechanics is capable of extracting the 2D black hole metric that previously had

been a subject of continuous effort. It is important to note that the case with h = 0 for

which R = Const arises at the c = 1 fixed point [13]. The role of nonsinglet sector in

matrix quantum mechanics is crucial in obtaining black hole like behavior from the bulk

background.

On the other hand, from the holographic RG point of view it can be shown that the

particular simple form of the R trajectory can be retrieved from the ratio of radial equations

of motion of the bulk scalar fields coupled to the 2D background. One serious obstruction to

such holographic picture for 2D cigar geometry is the fact that the boundary RG equations

derived from matrix quantum mechanics are α′ exact. The cigar background is more likely

to be visible in the high curvature regime where α′ is finite, while it is believed to be a

Sine-Liouville background for small α′ [20, 21]. Thus unlike ADS/CFT correspondence,

using the dual supergravity description in the holographic RG set up should no longer be

useful to make contact with the matrix quantum mechanics results and to see the cigar

metric. One then needs the more general framework of open/closed duality to deal with

the holographic RG for finite α′ (see for example [12]). However, in this paper we observe

that the R trajectory determining the cigar metric being a ratio of flow velocities of the

bulk scalars, is independent of the curvature term that contains all the α′ dependence. It

is thus consistent to match the R trajectory determined from the Holographic RG to that

derived from the α′ exact computation of matrix quantum mechanics.

The paper is organized as follows. In section 2, we will briefly review the shape of the

R trajectory near black hole like fixed points from worldsheet RG analysis of MQM with

nonsinglet sector. In particular we will discuss the significance of the rescaling equation for

the size of the compactified space in capturing the change of target space geometry around

the fixed points. In section 3 we calculate the cigar metric of 2D black hole starting from

– 3 –
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the R trajectory in the large-N in matrix quantum mechanics. In section 4, via Holographic

RG picture, we interpret the origin of the R trajectory in the boundary theory from the

classical evolution of bulk scalars.

2. R Trajectory from worldsheet RG of MQM with nonsinglet sector-

review

In this section we briefly review the essential ideas leading to existence of black hole fixed

points in the worldsheet RG of MQM with nonsinglet sector [14] and the shape of the R

trajectory near such black hole fixed points.

The large N worldsheet RG of MQM on a compactified target space [13, 14] 1 is

based on the interpretation of the very existence of the double scaling limit as some kind

of Wilsonian RG flow which is discussed in the context of c = 0 or pure gravity matrix

models [22]. In the double scaling limit, as the matrix coupling constant g → gc, the

average number of triangles in triangulations at any genus G diverges as

〈nG〉 ∼ (1 − G)(γ0 − 2)(1 − g/gc)
−1 , (2.1)

where γ0 is the string susceptibility constant. Simultaneously with N → ∞ where N is the

size of the matrices or the size of the SU(N) representation to which they belong to, the

regularized length of the random triangulations of the worldsheet a ∼ N
− 1

2−γ0 scales to zero

to keep the physical area a2〈nG〉 ∼ N
− 2

2−γ0 (1 − g/gc) or equivalently the string coupling

gs ≡ N2(g − gc)
2−γ0 fixed. In other words a change in the regularized length scale a on

the triangulated world sheet induces flow in the coupling constants of the theory in a way

that one reaches the continuum limit with correct scaling laws and the critical exponents

at the nontrivial IR fixed point determined by the flow equations. In the Wilsonian sense

this is done by changing N → N + δN by integrating out some of the matrix elements,

which is like integrating over the momentum shell Λ − dΛ < |p| < Λ, and compensating

it by enlarging the space of the coupling constants gi → gi + δgi. For world sheet RG

in MQM on a compactified target space [13] this would not only imply the evolution of

the two sets of parameters of the theory (the size of the matrix N and the cosmological

constant mapped into the matrix coupling g and all other matrix couplings) at the constant

long distance physics with the rescaling of the regularization length, but also an additional

rescaling law for the compactification radius R which we call the R trajectory.

From the results of [13] we have seen that the beta functions βg, βM computed by the

large N RG are such that the homogenous part of the Callan-Symanzik equation indeed

determines the correct scaling exponents for c = 1 matrix model around the nontrivial

fixed point. The inhomogeneous part is related to some subtleties in the theory, like

the logarithmic scaling violation of the c = 1 matrix model. From the running of the

prefactor of the partition function, written in the renormalized couplings, analogous to the

running due to the wave function renormalization, the free energy is observed to change

sign near R = 1 for small value of the critical coupling [13]. This is reminiscent of the BKT

1A brief review of the work can be found in section 3 of [15].
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transition at self-dual radius triggered by the liberation of the world-sheet vortices. The

attempt in [14] was to understand the detail nature of the nontrivial fixed points of the

flow that describes the physics beyond this transition. To capture the effect of vortices on

the flows and the fixed points more clearly and to introduce a new coupling that would act

like vortex fugacity, in [14] we analyzed the behavior of the following gauged matrix model

with simple periodic boundary condition and with an appropriate gauge breaking term

ZN [g, α,R] =

∫

φN (2πR)=φN (0)
D(N)2AN (t) D(N)2φN (t)

exp

[

− (N) Tr

∫ 2πR

0
dt

{

1

2
(DφN (t))2 +

1

2
φ2

N (t) − g

3
φ3

N (t) +
A2

N

α

}]

,

(2.2)

where the covariant derivative D is defined with respect to the pure gauge A(t) = Ω(t)†Ω̇(t)

by Dφ = ∂tφ+[A,φ], where Ω(t) ∈ U(N). Expanding the covariant derivative, the partition

function is rewritten as

ZN+1[g, α,R] =

∫

φN+1(2πR)=φN+1(0)
D(N+1)2AN+1(t) D(N+1)2φN+1(t)

exp

[

− (N + 1)Tr

∫ 2πR

0
dt

{

1

2
φ̇N+1(t)

2 +
1

2
φ2

N+1(t) −
g

3
φ3

N+1(t)

+AN+1(t) [φN+1(t), φ̇N+1(t)] +
1

2
[AN+1(t), φN+1(t)]

2 +
A2

N+1

α

}]

.

(2.3)

The AN+1(t)[φN+1(t), φ̇N+1(t)] term above is crucial to study the nonsinglets. Even though

they are present, the gauge invariance tries to project the system to the singlet sector

while the gauge breaking term prevents to do so. As the nonsinglets are confined at small

temperature, such a term will have negligible effect at large radius and hence a finitely

large radius representation of singlet sector can be derived without invoking such a term

in the MQM action [23]. In [24], the partition function for one vortex/anti-vortex pair, i.e.

in the adjoint representation was calculated by analytical continuation from the twisted

partition function of the standard harmonic oscillator to that of the upside down oscillator.

For α = 0, the gauge fields are forced to vanish and the partition function reduces to that

of ungauged matrix quantum mechanics on circle.

Now the integration over the degrees of freedom corresponding to (N + 1)-th row and

column of the matrices φ(t) and A(t) involve detail diagrammatics [14]. As in standard

Wilsonian method, after evaluating the Feynman diagrams we perform following rescaling

of the variables t and the conjugate momentum 1/R and the fields φ(t) and A(t) in order

to restore the original cut-off

t → t′(1 + h dl) , R → R′(1 + h dl) ,

φ(t) → ρφ′(t′) ,

A(t) → (1 − h dl) ηA′(t′) , (2.4)

– 5 –
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where,

dl = 1/N , h = h(R) +
∑

i,j

cij giαjhij(R) . (2.5)

Here ρ, η are field rescaling that can be precisely determined by considering the regularised

coefficients of φ2(t)/2 and φ̇2(t)/2 to be one. The parameter h appearing in coordinate

rescaling is a function of the radius R and the the matrix couplings and its functional

form can be explicitly determined from the behavior of the flow equations near the fixed

points. In fact h turns out to be the scaling dimension of the operator coupled with the

mass parameter, i.e. the coefficient of the φ(t)2/2 term, and appears in the universal term

of its beta function equation. Being in the universal term of the beta function equations

of the couplings g and α, the function h determines the radius at which the corresponding

operators become relevant and could trigger phase transition. To summarize, h determines

the scaling exponents of the fixed point by saturating itself to a constant value characteristic

to that particular fixed point. Thus the rescaling of the compactification radius R in (2.4)

in some sense tells us that, as the system flows to various fixed points, the target space

geometry changes accordingly. This is something new in matrix model, which directly

enables us to determine the target space metric around a fixed point by solving the R

trajectory
dR

dl
= −h(R) R , (2.6)

in the neighborhood of the particular fixed point. For example, h = 0 corresponds to a

c = 1 fixed point [13] giving a flat metric corresponding to R = Const.

Now (like the standard hermitian MQM on circle analyzed in [23, 13]) the MQM

characterized by (2.2) with an explicit inclusion of votrices also exhibits phase transition

at the self-dual radius as the free energy changes sign due to a contest between the entropy

of the liberated vortices and the energy of the system [25]. The list of required beta

functions (as compared to the analysis in [13]) now involves an additional flow equation

βα for the fugacity α over the usual beta functions βg, βM . In a range of values below the

self-dual radius, a pair of fixed points given by (g∗2, α∗,M∗ = 1) become purely repulsive

fixed points of large coupling and exhibit negative specific heat and one loop correction to

the Hagedorn density of states very similar to those exhibited by an unstable Euclidean

black hole in flat space time. For a particular class of fixed point that flows to pure

gravity (c = 0 matrix models) as R → 0, the change of entropy exhibits a discontinuity at

RH = 0.73, little above the BKT temperature, indicating the Hagedorn transition to be

of first order driving the system to an unstable (and possibly a black hole) phase. Around

this region the involved scaling dimensions including h are large constants. As we proceed

we see black hole like thermodynamics emerging from the region where h is a large positive

constant [14]. The general h(R) for such class of black hole fixed points is given by (See

figure-7 of [14])

h(R) ∼ coth(R − RH) + C . (2.7)

As R → RH The R trajectory around such black hole like fixed points thus behaves as

dR

dl
≈ − coth(R − RH)RH . (2.8)

– 6 –
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In the rest of the paper, we will use this rescaling relation of the compactification radius

with respect to the Liouville field, acting as the RG scale, to extract the two dimensional

Euclidean black hole metric around the new type of fixed points arising above the BKT

transition point discussed above.

3. Cigar metric from R trajectory near a euclidean black hole fixed point

In this section we will show how the 2D black hole metric can be directly obtained from

the RG flow of the compactification radius R in the large N renormalization analysis of

the boundary theory [14]. Recall that the rescaling of the radius R, R → R′(1 + h dl), to

restore the original cut-off is in some sense a running of the compactification radius given

by the following beta function [14]:

βR =
dR

dl
= −h(R) R . (3.1)

This indicates a deformation of the target space geometry. From the definition of the

double scaling limit, the RG scale l = 1/N is given by

1

N(g − gc)(γ0−2)/2
= const . (3.2)

The constant in the right hand side is fixed by the closed string coupling gs. Near the

black hole fixed point, the string susceptibility exponent γ0 = 2 [14]. It is then natural to

identify the RG scale with the dilaton. This is because the regularized length a = eφâ on

string worldsheet for (2 − γ0) = ǫ → 0 and a generic RG scale l ∼ 1
N would behave as

aǫ ∼ eǫφ âǫ ∼ ǫl → 0 , (3.3)

which implies dφ ∼ dl. This is similar to the case of holographic RG in AdS/CFT where

the beta functions βi = dλi/dφ describe the running of the boundary couplings with respect

to a RG scale φ that is actually the scale factor of the 5D supergravity metric. Thus the

beta function equation for the compactification radius becomes

dR

dφ
= −h(R) R . (3.4)

Now, as we have seen, h → 0 for the usual c = 1 fixed point that describes flat metric

with a linear dilaton background [13]. As a result the corresponding asymptotic radius

is independent of the scale. On the other hand, h saturates to a large positive value as

the radius gets very small and the theory flows to the Hagedorn point β → βH [14] where

we see black hole like behavior with emergence of negative specific heat. According to

the results in [14] the theory has negative specific heat indicating black hole like behavior

occurring around βH = 2πRH , where RH is just below the self dual radius (or the BKT

radius).

Now as R → RH , considering the details of the divergence of h for a black hole fixed

point as given by (2.7) the corresponding R trajectory (2.8) in dilaton scale can be written

as
dR

dφ
≈ − coth(R − RH) RH . (3.5)

– 7 –



J
H
E
P
0
2
(
2
0
0
8
)
1
0
7

Thus the dilaton indeed solves for the cigar background

φ = − ln cosh(R − RH)/RH + φ0 . (3.6)

Thus as

R → RH , ⇒ φ → φ0 , ⇒ gs → eφ0 . (3.7)

Note that while the cigar background (3.6) formally gives the desired asymptotic behavior

R → ∞ , ⇒ φ → −∞ , ⇒ gs → 0 , (3.8)

the computations using (3.5) can only be trusted in the regime R → RH .

Now we will show that near R → RH , the trajectory (3.5) can compute correct con-

formal scale for the Euclidean 2D black hole metric in conformal gauge that via light cone

coordinates in analytically continued space can be expressed as the two dimensional black

hole metric in Kruskal-Szekeres coordinates [18, 19]. The Euclidian radius is given by

r2 = (x − x0)
2 + (y − y0)

2, which can be written in terms of the (analytically continued)

light cone coordinates u = ix + y, v = ix − y as

r2 = −uv . (3.9)

Using (3.9) in (3.6), the solution for φ in terms of the light cone coordinates near R → RH

can be expressed as

e−2(φ−φ0) =
[

cosh(R − RH)
]2/RH ≈

[

1 +
2

RH

1

2
(R − RH)2

]

= (1 − uv/RH) . (3.10)

Now the bulk Euclidean metric in the conformal gauge taken to analytically continued

space in terms of the light cone coordinates looks like

ds2 = e2φ(dx2 + dy2) = −e2φ dudv (3.11)

Rescaling u →
√

RH u and v →
√

RH v and putting the value of the conformal scale in

terms of u v coordinates from (3.10), the metric is given by

ds2 = −e2φ0 RH
du dv

(1 − uv)
∼ du dv

(1 − uv)
, (3.12)

for RH ≃ 1 and φ0 = 0 or the string coupling being of order one at the Hagedorn radius.

This is nothing but the two dimensional black hole metric in Kruskal-Szekeres coordi-

nates [18, 19]

ds2 ∼ − du dv

1 − uv
, (3.13)

with horizon at uv = 0 and a coordinate singularity at uv = 1. Thus for large positive

h with the detail of the divergence given by (2.7), we have two dimensional cigar metric

corresponding to the region of large negative specific heat.

– 8 –
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4. Holographic RG origin of the R trajectory computing cigar background

In this section we will discuss a possible explanation of the origin of the R trajectory

in the large N RG from a holographic RG perspective [8 – 10, 12, 11]. Here the matrix

quantum mechanics acts as the boundary theory and the two dimensional gravity theory

as the holographic dual to the boundary theory. The boundary equations in large N

renormalization group flows in the matrix quantum mechanics, derived in [13, 14], can

be thought of as some kind of radial evolution of the scalar fields coupled to the two

dimensional gravity. In particular, from the holographic RG point of view it can be shown

that the simple flow equation for R around the black hole fixed point, can be retrieved

from the ratio of flow velocities (the radial equations of motion) of the bulk scalar fields

coupled to 2D dilatonic black hole background. In other words, the 2D cigar black hole

can be seen as the a specific RG flow trajectory towards nontrivial IR fixed points as seen

by the boundary couplings propagating in the radial direction as the bulk scalar fields of

the dual theory.2

4.1 Classical closed string field evolution — A review for 2D case

To evaluate the boundary RG flow for our 2D theory let us consider the scalar φI = t

(the Euclidean time) coupled to gravity and the metric describing the space to be that of

a cigar geometry

ds2 = k(dφ2 + tanh2 φ dt2) . (4.1)

Let us consider a RG scale µ corresponding to the position φ = φ0 in the radial direction,

that separates high and low energy contributions (into local and nonlocal parts) in the

effective action. A shift in the adjustable parameter φ0 relates to the physical RG scale

transformation through the shape of the boundary metric

gµν = a2(φ)ĝµν , a = µ/Ms , (4.2)

where the RG scale a is given by the ratio of the RG energy scale µ to the string energy

scale. The local and the nonlocal parts in the effective action evolves under a shift in φ0

in such a way that a unique3 classical trajectory (the field configuration on the boundary)

solves the equation of motion for the total action. The flow velocities of the scalars with

respect to the sliding scale φ0 are proportional to the variation of the local (or equivalently

the nonlocal) part of the action. The variation of the local and the non local part together

solves the classical equation of motion. Using this in the classical Hamiltonian constraint,

one gets a nonlinear Hamilton-Jacobi evolution for the local (or equivalently the nonlocal)

part of the action which basically serves as the Callan-Symanzik equation for Holographic

RG. Let us here briefly mention its relation to the Callan-Symanzik equation for the one

2In the context of holographic RG in ADS/CFT, a crude analogy may be drawn to the deviation of the

5d geometry of ADS5 from its most symmetric form due to the evolution of the boundary couplings in the

radial direction as the scalars of the dual supergravity. The deviated geometry may contain domain wall

structures or naked singularity as the specific RG trajectories towards nontrivial IR QFTs [26 – 29].
3The uniqueness was argued in [9].
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point function of the loop operator in the large N RG, namely the WdW equation, which

is basically a quantized version of the hamiltonian constraint on the world sheet. The

WdW equation from the large N RG being computed by a matrix quantum mechanics, is

α′ exact and gives a richer structure than the minisuperspace WdW when computed with

N2 quantum mechanical degrees of freedom [15]. On the other hand the Callan-Symanzik

equation for the Holographic RG, on being linearized by a variation with respect to the

local (or the nonlocal) part of the action, reduces to a minisuperspace WdW with a leading

order in the α′ dependent term.

In the following few paragraphs, we will briefly sketch few essential points of holo-

graphic RG for finite α′ from [12], which will be used in the remaining part of the paper.

Following [12], the total low energy effective action for small ’t Hooft coupling (λ = Ng2
YM)

can be schematically written as sum over all n-loop planar open string diagrams in the

closed string background φ

S(φ) = Γ0(φ) +
∑

n≥1

λnΓn(φ) . (4.3)

Here Γn(φ) represent the (n − 1) loop open string contribution given by the partition

function of the world sheet sigma model in background given by φ on a sphere with n holes

with all moduli parameterizing the sizes and relative locations of the holes being integrated

over. Γ0 gets contribution from sphere without holes and can be interpreted to have the

same form as the standard classical action of a closed string field theory [30]. This is a

finite α′ generalization of the low energy effective action used in the holographic set up in

the context of AdS5/CFT4 duality [8, 10, 11] or in warped compactifications [9] involving

dynamical gravity.

Let us now talk about the issue of scale transformation in gravity with respect to

the action (4.3). As a standard procedure, one introduces a cut-off a to regulate both

the divergences from the sigma model expectation value and that from the integral over

the moduli (when there are holes approaching each other) leading to sigma model Weyl

anomaly. The renormalized background φ(a) with sigma model beta functions

a
∂φI

∂a
= βws(φ)I (4.4)

then compensates the Weyl anomaly by Fischler-Susskind mechanism [2, 3] canceling the

net cut-off dependence of the total action S(φ(a), a)

a
d

da
S(φ(a), a) = βI

ws(φ)
∂S

∂φI
+ a

∂S

∂a
= 0 . (4.5)

However, for λ → 0, this cancelation requirement is essentially the usual condition for

conformal invariance as the holes due to open string loops are absent.

Now the explicit scale dependence of the total action S(φ(a), a) comes from the bound-

ary of the moduli space described by the degenerate geometries. As pointed out in [1], in

a theory with gravity the question of scale dependence or the beta function is solely deter-

mined by degenerate or pinched surfaces (assuming the overall geometry to be spherical).
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This is because, all the components of the energy momentum tensor, the generator of the

scale transformations, vanish or become BRST commutators on gauge fixing. Thus only

the degenerate geometries, that form the boundary of the moduli space, have a nonzero

contribution to the scale dependence.

To evaluate the Weyl anomaly due to the explicit scale dependence of the total action,

let us consider the UV regulator a on the world sheet giving a lower bound to the minimal

geodesic length lC of all non-contractible contours C surrounding a nonzero number of holes,

making the boundary of the regulated moduli space to be degenerate surfaces satisfying

the bound for one or more contours C . Such a pinched surface is conformally equivalent to

spheres with vanishing holes separated by long cylinder of length 1/a for which the closed

string propagator in the dual channel has acquired a large length. Cutting the cylinder and

inserting a complete set of states, the partition function factorizes into a sum of products

of two one-point functions defined on each half of the surface on each side of the long

propagator. More specifically the evolution operator along the long tube takes the form

aL0+L̄0 =
1

2

∑

I,J

|OI〉GIJ 〈OJ | . (4.6)

This determines the anomaly to be of the form

a
∂S

∂a
= −1

2
GIJ ∂S

∂φI

∂S

∂φJ
, (4.7)

where GIJ is the 2D metric on the space of couplings φI . Using the form of the total

action (4.3), one can see the anomaly (4.7) is only compensated by the following running

of the renormalized background φI(a),

βI
ws(φ) = GIJ ∂Γ0

∂φJ
, (4.8)

where ∂Γ0/∂φI describe the divergences due to a sphere without holes. Here one can

identify Γ0 to be the local part SLoc of the low energy effective action, i.e. the Einstein part

SE , which is also related to the classical flow velocities as a function of the holographic

extra dimension in the exactly same manner [8 – 11]

βI
ws(φ) = GIJ ∂SE

∂φJ
. (4.9)

Plugging (4.7) in (4.5), one structurally reproduces the flow equation derived by the clas-

sical gravity4

a
∂

∂a
S(φ(a), a) = βI

ws

∂S

∂φI
− 1

2

(

∂S

∂φI

)2

= 0 , (4.10)

with the identification of Γ0 to be the Einstein part of the gravitational action. Now using

the flow velocities

φ̇I =
1√−g

GIJ ∂Γ0

∂φJ
,

1

2
(ġµν − ġλ

λgµν) =
1√−g

∂Γ0

∂gµν
, (4.11)

4This also hold true for scalar evolution derived from classical supergravity.
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the radial evolution of the scalars in the bulk can be written as the Hamilton-Jacobi

equation

1√
−g

(

1

3

(

gµν δΓ0

δgµν

)2

−
(

δΓ0

δgµν

)2

− 1

2

(

δΓ0

δφI

)2)

=
√−g L(φ, g) , (4.12)

where L is the local Lagrangian density in the bulk.

So far, following [12], we sketched the essentials of the classical closed string field

evolution from holographic RG analysis at finite α′. Let us now try to understand what

does the solvent Γ0 of the Hamilton-Jacobi equation (4.12), which is basically the local

Einstein part of the low energy effective action, imply in context of our 2D scenario. The

holographic RG essentially enables general classical trajectories of the low energy effective

action of 2D string theory to be describable as parameter families of 1D fields that can

change their local shape with the variation of the holographic extra dimension a (which

in our example is related to the dilaton direction). Now if we consider a compactification

of the other dimension such that the metric is warped (for example 2D cigar type of

metric), the fields φI will be normalizable dynamical fluctuations of closed string modes.

The local part of the low energy effective action is then the part of the bulk 2D action

that includes the contribution of KK modes and can be described as RG trajectory on 1D

field configuration. The classical configuration of one dimensional fields inside the manifold

ΣLoc is uniquely determined by the boundary values of the fields φI(a0), even though the

local action does not know the whereabouts of the boundary (which is consistent with the

fact that in the loop expansion with finite α′ (4.3) the local action Γ0 comes from the

contribution of sphere without holes).

Now the local Einstein part of the effective action would generally look like

Γ0 = SE ∼
∫ √−g

(

T (φ) + Φ(φ) R +
1

2
∂µ ΦIMIJ(φ) ∂µΦJ

)

, (4.13)

where T , Φ and M are local functions of couplings. The local action has a very similar

structure as the lagrangian density L in the Hamilton-Jacobi evolution (4.12)

L(φ, g) = V (φ) + R +
1

2
∂µφI GIJ ∂µφJ . (4.14)

Let us now plug (4.13) and (4.14) in (4.12) and consider the energy scale µ below the scale

of cut-off µc ∼ eλr, where different local and nonlocal terms in the action can be separated

by scaling behaviors (up to a redefinition of the nonlocal action by finite local terms). In

the limit ǫ = µ
µc

→ 0, collecting the quartically divergent potential term from both sides

we have

1√−g

[

1

3

(

gµν δ
√−g

δgµν

)2

T (φ)2 −
(

δ
√−g

δgµν

)2

T (φ)2 − 1

2

(

∂IT (φ) ∂IT (φ)
)

]

=
√−g V (φ) ,

(4.15)

which in our 2D case solves for

V (T ) = −
(

1

12
T 2 +

1

2
(∇T )2

)

. (4.16)
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By a rescaling φ →
√

6 φ ⇒ T (φ) →
√

6 T (φ) , this boils down to

V (T ) → −1

2

(

T 2 + (∇T )2
)

. (4.17)

Recollecting (4.14) to be the two dimensional lagrangian density with spacetime poten-

tial given by (4.17) one can structurally identify T to be the 2D tachyon background by

comparing with the target space action of 2D string.

We will now heuristically explain why this identification of T (φ) with the 2D closed

string tachyon background is also consistent with the definitions of Γ0 as the local Einstein

action (4.13) as well as the classical closed string field action in the loop expansion of the

total action with finite α′ (4.3). Let us recall from [30] the classical closed string field action

Γ0(φ, ǫ) =
1

2
< Φ | Q | Φ > +

∑

n≥3

1

n!
< Φn > , (4.18)

where Q is the BRST charge of the free (φ = 0) sigma model and | Φ >=
∑

i φi | Oi >

describe the states corresponding to the sigma model background Φ. These are the string

fields that act as vectors in the Hilbert space of conformal field theory. Such a form of the

closed string action is a remnant of the planar truncation of the higher genus expansion

of the action of Riemannian surfaces embedded in two space time dimensions (which is

manifest in the quantum closed string field action). Thus in 2D, via appropriate Legender

transformation, Γ0 in (4.18) can be easily taken to the 2D sigma model action that is

structurally same as the 2D local Einstein gravity (4.13) provided T (φ) is identified to be

the 2D closed string Tachyon background.

Thus in two dimensions the local action Γ0 in a slowly varying background will only

have a local potential term
∫ √−g T , which via (4.12) is related to the spacetime potential

V (T ) in the exactly same manner as that of a closed string tachyon field. This is another

way to see that in 2D, the nonlinear Hamilton-Jacobi equation (4.12) actually solves for

the 2D Tachyon background. In the next section we will solve for this background. Using

this background, we will then determine the flow velocities of the scalars, which will enable

us to determine the R trajectory.

4.2 Solution for the 2D background

Now plugging the rescaling (4.2) in the radial evolution of the scalar fields approximated by

the Hamilton-Jacobi equation (4.12), a classical closed string field evolution with Einstein

part of the action replaced by Γ0, we have

[

a2

12

(

δΓ0

δa

)2

− 1

16a2

(

δΓ0

δa

)2

− 1

2

(

δΓ0

δφI

)2]

= a8L . (4.19)

One can then solve for Γ0 with proper initial conditions and determine the beta function

from (4.8). However, the main difficulty is to write down the full space time Lagrangian

L for finite α′. Schematically, it will contain α′ corrected full tachyon potential for the

2D space time, which we can neglect as we are looking at the pure dilatonic black hole.

It will also have some general curvature term with corrections from all orders and besides
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that there will be all orders of derivative terms in fields (t, φ) . To get a crude estimation

of Γ0, let us assume slowly varying field neglecting all derivative terms and the leading

curvature term a8Λ, where Λ is the rescaled scalar curvature. Considering the shape of the

metric a ∼ eφ and a trial solution of the form Γ0 ∼ e4φ y(t, φ), the equation (4.19) can be

rewritten as,

(

∂y(φ, t)

∂t

)2

−
(

1

6
− 1

8
e−4φ

)(

∂y(φ, t)

∂φ

)2

−
(

8

3
− 2e−4φ

)

y(φ, t)2 + 2Λ = 0 . (4.20)

For large string coupling φ → ∞, which implies a large scale factor a for 2D noncritical

theory, the Λ = 0 solution is of the form

y(φ, t) = exp

[

− 4c1
√

6 − c2
2

]

exp

[

4(c2φ + t)
√

6 − c2
2

]

, (4.21)

where c1 and c2 are two arbitrary constants. Now choosing c1 = 0 and 1/(c2 +
√

6 − c2
2) =

−2ν/Q, the solution for Γ0 takes the form of the usual 2D Tachyon background (see the

discussion at the end of the previous subsection)

T (t, φ) ∼ e−νteQφ/2 , (4.22)

Q being the background charge. At large positive ν, we have zero tachyon background

admitting the cigar geometry (4.1) [18, 19, 17].

4.3 The R trajectory as the ratio of flow velocities

To get the R-trajectory we will now use the 2D background determined above by the

classical closed string field evolution and plug it in the RG flow (4.8). From there, the ratio

of the pair of flow equations for the fields (t, φ) is given by,

∂t

∂φ
=

∂t/∂ ln a

∂φ/∂ ln a
=

1

c2
= −2ν/Q . (4.23)

In the boundary theory, t ∼ t + R. To identify (4.23) with the boundary flow we now have

to relate the background charge Q (the slope of the linear dilaton) to the compactification

radius R of the target space coordinate t. Such a background charge modifies the world

sheet central charge in φ to

cφ = 1 + 3Q2 . (4.24)

Comparing the total central charge with that of the SL(2,R)k/U(1) coset CFT describing

2D cigar background, the linear dilaton slope is related to the asymptotic radius of the

cigar geometry R0 via the level k as

Q2 =
2

k
=

1

R2
0

. (4.25)

Thus from the boundary theory point of view it will be natural to assume Q ∼ 1
R in the

sense that a generic compactification circle of radius R in the t direction will give rise to

the compact direction of the cigar geometry in the 2D continuum.

– 14 –



J
H
E
P
0
2
(
2
0
0
8
)
1
0
7

On the other hand, t and 1/R being Fourier conjugate variables on the compactification

circle, a rescaling t → t(1+h dl) in t is compensated by a rescaling in 1/R in opposite way

(keeping up to O(dl) term): 1/R → (1 − h dl)/R in order to keep the product intact. So

the change in R due to change in the scale will be the same as that of t.

Hence the relation (4.23) leads to the same form of RG flow at the boundary as obtained

in [14] by the large N renormalization group analysis

dR

dφ
∼ −2νR . (4.26)

Moreover, as ν → +∞ the tachyon field T → 0, and the holographic RG analysis shows

that for a purely dilatonic black hole the factor 2ν is large and positive in the flow equa-

tion (4.26), which is indeed the case in the boundary theory as predicted by the direct

large N renormalization group analysis of the modified matrix quantum mechanics de-

scribed by (2.2) [14].

One point is noteworthy here. The equation (4.26) for the compactification radius

naturally arises in the RG flow of the boundary theory due to rescaling of the coordinates t,

1/R. On the other hand, in the bulk, we are actually studying one dimensional trajectories

of critical points with fixed rescaled curvature R̂ = Λ traced out by the RG flow:

βt =
∂t

∂ ln a
=

1√−g

∂Γ0

∂t
,

βφ =
∂φ

∂ ln a
=

1√−g

∂Γ0

∂φ
, (4.27)

or alternatively, one can look at the combined effect of ∂t/∂φ. From the boundary theory

point of view dt/dl ∼ dR/dl, where dl ∼ dφ. Hence in other words the holographic RG

flow actually captures the trajectory dR/dφ, that is observed to match with that of the

flow in the boundary theory. The fixed points in the RG flow of the boundary theory

are actually with respect to the coupling g and α of the gauged matrix model with an

appropriate gauge breaking term considered in [14]. There the compactification radius R

acts like a parameter. Thus the specific form of flow of R (4.26), which is a specific RG

trajectory in the holographic RG point of view, describes 2D black hole near the black hole

fixed point (characterized by negative specific heat and Hagedorn density of states) of the

boundary theory given by particular fixed point values g∗ and α∗. Note that this should

not be confused with the fact that in the coset CFT description of the cigar geometry (4.1),

the asymptotic radius is already fixed by IR regularity. The same radius is also fixed here

in the integration of equation (4.26) with proper boundary condition. Also note that the

issue of determining the R-trajectory from holographic RG set up, which is in the leading

order in α′ (using a slowly varying space time) does not affect the computation. This is

because, the R-trajectory being a ratio of flow velocities is independent of the curvature

term and thus of α′. Thus it is consistent to reproduce the R-trajectory computed by α′

exact matrix model from holographic RG set up which is α′ non exact.
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